Techniques for Computing Fitness of Use (FoU) for Time Series Datasets with Applications in the Geospatial Domain

نویسندگان

  • Lei Fu
  • Leen-Kiat Soh
  • Ashok Samal
چکیده

Time series data are widely used in many applications including critical decision support systems. The goodness of the dataset, called the Fitness of Use (FoU), used in the analysis has direct bearing on the quality of the information and knowledge generated and hence on the quality of the decisions based on them. Unlike traditional quality of data which is independent of the application in which it is used, FoU is a function of the application. As the use of geospatial time series datasets increase in many critical applications, it is important to develop formal methodologies to compute their FoU and propagate it to the derived information, knowledge and decisions. In this paper we propose a formal framework to compute the FoU of time series datasets. We present three different techniques using the Dempster-Shafer belief theory framework as the foundation. These three approaches investigate the FoU by focusing on three aspects of data: data attributes, data stability, and impact of gap periods, respectively. The effectiveness of each approach is shown using an application in hydrological datasets that measure streamflow. While we use hydrological information analysis as our application domain in this research, the techniques can be used in many other domains as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Missing data imputation in multivariable time series data

Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...

متن کامل

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

An Empirical Comparison of Distance Measures for Multivariate Time Series Clustering

Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...

متن کامل

Data Replication-Based Scheduling in Cloud Computing Environment

Abstract— High-performance computing and vast storage are two key factors required for executing data-intensive applications. In comparison with traditional distributed systems like data grid, cloud computing provides these factors in a more affordable, scalable and elastic platform. Furthermore, accessing data files is critical for performing such applications. Sometimes accessing data becomes...

متن کامل

Analytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series

A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • GeoInformatica

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2008